

Page 1

Subject7, Inc. | Test Approaches and Types Distilled

Test Approaches and Types Distilled

By Matthew Heusser Matt@xndev.com for Subject7

A few years ago, a friend emailed me a survey about software testing. The survey asked

us to specify our roles, along with which kind of testing we thought was most important.

As I recall, the question was, "If you could only do one type of testing, which would you

pick?" Surprisingly, the point of the survey was to see if there was a correlation between

role and preference -- and there was. Patrick Bailey, a professor at Calvin College, found

that developers overwhelmingly valued unit testing, analysts valued system testing,

project managers and other customer-focused roles valued user acceptance testing.

As it turns out, there are many more types of testing than just those three. So when we

say the word "test," it is possible that we mean entirely different things.

And when we say "test strategy," we probably mean the combination of test approaches

and effort that offers the most value. Today, I will offer a smattering description of different

types of testing, along with their pros and cons. After reading this article, software testing

novices should have enough familiarity to have a clear discussion. If you are a testing

expert, you can forward this article to create a shared understanding or have fun nit-

picking at my definitions. Hopefully both! I'll run through the definition, pros and cons, and

best use of each, along with a bit on strategy. This is a vast topic, and my goal is to write

a version of those "if you only ever read one article on functional software testing" articles.

Here goes, in rough order from a customer to developer.

Types of Functional Testing

The V-Model. This is an older idea in
software engineering that every level of testing
had a corresponding level of the test.
Changes at the code level would be
tested with unit tests; at the design
level, there would be integration tests; at the
requirements level, we have system tests, and so
on. The idea is intuitive and straightforward but
does not correspond to how software is built.
Instead, organizations look for more ways to test more
things as often as possible. Knowing the idea of the V-
model can be a good start -- just don't stop there.

mailto:Matt@xndev.com

Page 2

Subject7, Inc. | Test Approaches and Types Distilled

Acceptance Testing. This is a testing classic, usually defined as User Acceptance

Testing (UAT), and implies having someone who is (or acts like) a customer do actual

hands-on keyboard testing while using the software. UAT intends less to find bugs and

more to get the users to "accept" the system as "good enough" and provide ideas for

future features or user interface improvements. Of course, UAT results can send the

software back to the programmers for fixing, but most UAT groups intend that the

software would be well-tested by other means before even getting to UAT. Getting

customers into a zoom meeting to conduct a UAT then finding that they are unable to

even login to the software makes the programmers look bad and wastes everyone's time.

End to End (E2E) Testing. This involves testing the entire customer experience of using

an application from a customer's perspective. In eCommerce, that might be the entire

user journey from creating an account to finding a product, adding it to the cart, and

ordering it. When we do this sort of testing, it is tempting to stop before exercising the

parts of checkout where API calls take place. Generally, the checkout process is where

APIs may validate inventory, return shipping and delivery dates, and validate the credit

card information. Ron Jeffries, one of the authors of the Agile Manifesto, is credited with

the phrase "end to end is farther than you think." Not running through the complete

customer journey can run afoul of the true intent of end-to-end testing.

Feature Testing. This is testing a new feature in some detail. Feature tests often include

one-time "what if" questions and difficulties that may often run to confirm that the software

did not fall backward or regress. Sadly, it is expected that a change performed on one

feature may have unintended consequences and break some other feature unexpectedly.

This leads to a desire to "double-check" that something outside the feature did not

regress after making a change.

Regression Testing. The periodic running through of a wide-ranging battery of tests

intends to reduce the risk that a regression (breakage of what worked before) escapes to

customers. This can be related to a "final check" or final inspection of the software

release, especially in software systems where the entire application is delivered as one

"build." Most GUI test automation is considered regression testing.

API Testing. The next level down from the user interface is the Application Programming

Interface or API. On the web, these are requests the web page calls to make queries.

For example, a web page might call an API to return search results for "Matthew

Heusser" to find the books (products) written by Matthew Heusser. API tests define a set

of expectations for the API - they work as examples. This is a contract for how the API will

operate. Before the API changes, the programmer can run the test to ensure the contract

continues. This significantly reduces the chance of a breaking change. Breaking

changes then require versioning or coordinated deploys.

https://books.google.com/books?id=hckt7v6g09oC&pg=PT1111&lpg=PT1111&dq=%22end+to+end+is+farther+than+you+think%22+testing&source=bl&ots=IUPf81_QIT&sig=ACfU3U365xzXurCF-ItjtG8cGr0CbFNmUg&hl=en&sa=X&ved=2ahUKEwinx73k8abyAhUFHs0KHSdhCYoQ6AF6BAgIEAM#v=onepage&q=%22end%20to%20end%20is%20farther%20than%20you%20think%22%20testing&f=false

Page 3

Subject7, Inc. | Test Approaches and Types Distilled

Integration Testing. Somewhere between testing just a simple change in code and the

entire system is the integration test. Further, this is a level of software testing where

individual units and components are combined and tested as a whole. The purpose of this

type of testing is to detect defects in the interactions between integrated units. Mocking

and test stubs are often employed in simulation of various components while performing

this type of testing.

Unit Testing or Micro-tests. Unit tests generally make no sense to end-users and are

more confirmatory for developers. A unit test is written before the code provides the

programmer the satisfaction that the code does what the programmer expects. That is a

good start but does not provide the customer perspective.

In addition to these, then we have the "special" types of tests…

Special Categories

Black-box testing. It understands what is

happening to a piece of software from the outside,

without any insight into the system’s state of

internals. Typically, this is a user interface, but it is

possible to Black-box test an API or a specific

component. Imagine picking an avionic part, such

as an airspeed indicator, and hooking it up to a

hairdryer that blows air into the tube. The operator

can measure if the speed is correct or the speed of

response but knows nothing about the internals

and how each component within the part functions.

Getting a result that is expected is a tacit

confirmation that the feature is functioning as

intended.

Clear-box or White-box testing. This is testing the software with an awareness of the

innards. Debuggers allow a programmer to walk through every line of code that is

executed, start or stop a test on a particular line of code, review the values of the

variables or even change the value of those variables. Observability is a modern practice

that makes testing the software from the outside look like a transparent box by dropping

those values and traces of the software to a log.

When to use Black or Clear-box testing. Most companies use Black-box testing for

user acceptance testing and final checks. As observability continues to improve, the

difference between the two is becoming more marginal. For that matter, as testing in

Page 4

Subject7, Inc. | Test Approaches and Types Distilled

production rises, the difference between testing and production monitoring is dwindling as

well.

Testing in Production. This was previously throwing new code on the same system

customers use, then rushing to test it before the customers do. Today, it may be possible

to create a new branch of code that will only be used by testers, or people in software

engineering, or employees. After a few hours, days, or weeks of waiting (and perhaps

fixing), that code could be promoted to production, with an ability to identify problems

quickly and rollback. This can accelerate the time to production while reducing risk. This

idea of getting code to production quickly while managing the risk is sometimes called

"Shift-Right Testing."

Other types of testing
I'm not a huge fan of the term "functional testing." In my mind, the purpose of testing is to

reduce risk, and it seems unwise to limit the risks to just functional. Other testing

disciplines, including performance, load, accessibility, scalability, and security, are all

risks that can, and should, be tested for risk mitigation. Performing significant functional

testing while neglecting other important testing disciplines is a formula for disaster. It's

critically important to look at the big picture and ensure your test coverage aligns with the

various risks that your application/customers may face.

For today, we covered functional testing. The rest? That will have to be a conversation

for another time -- soon!

